
ETA v2.1

Overview
excerpts from

User Guide
&

Command Reference

Etaliq Inc. Phone: (613) 241–1385
4B–2548 Sheffield Road Fax: (613) 241–1523
Ottawa, ON K1B 3V7 http://www.etaliq.com



3

Chapter 1

Introduction to ETA

1.1 Process Overview

The ETA application supports all facets of test automation and reporting:
• The creation and retention of test plans and the automation of test cases.

• The creation and retention of execution tables defining devices or testbeds
where test plans will be executed.

• The scheduling and execution of these test plans against one or more testbeds
or devices defined in execution tables.

• The detailed reporting and logging of executions for easy review.

• Summarized reporting of execution results and resource usage.
Figure 1.1, “Etaliq process” on the following page represents the various compo-

nents, processes, and sub-systems of the ETA application1. For further information
on the planned availability of these sub-systems as well as other features, please
contact your Etaliq Support representative.

1.1.1 Create/Import Test Plan

Create a test plan with any text editor and import into ETA database. This feature
is discussed in more detail in chapter 12, “Creating a Test Plan” on page 85.

1.1.2 Execute Test Plan

Execute a test plan to occur immediately or set up a schedule all from within the
ETA Client GUI. This feature is explained in more detail in chapter 6, “Execution
Scheduling” on page 41.

1The Change Management and Problem Management sub-systems are not implemented in the
current version of ETA.

ETA v2.1 User Guide & Command Reference



4 CHAPTER 1. INTRODUCTION TO ETA

Figure 1.1: Etaliq process

DispatcherRepository/
Database

Code
Compiler

Syntax
Checker

SchedulerExecution
Engine

Report
Manager

Change
Management

Problem
Management

Result
Tracking

ETA Test
Plans

ETA
Execution

Tables

HTML
Reports

CSV
Reports

Text
Reports

Detailed
Execution
Logs and
Reports

1.1.3 Review Results

Review the detailed results or logs associated with any execution, which can be
archived (baselines) or downloaded. This feature is explained in more detail in
chapter 9, “Reviewing Executions” on page 59.

1.1.4 Summarized Reports

Create executions or node usage summary reports dynamically for forecasting and
analysis. This useful tool aids in resource usage within the testing cycles and sched-
ules. This feature is explained in more detail in chapter 11, “Summarized Report-
ing” on page 73.

1.1.5 Archive or Download Reports

Download text versions of detailed execution test plans, execution tables, reports,
and logs for off database storage or move entire execution reports to archive. This
feature is explained in more detail in chapter 1, “Introduction to ETA” on the
previous page.

1.2 ETA System Architecture

ETA (Easy Test Automation) is a test automation tool for testing any system or
software supporting a text based command-line interface. Text based testing pro-
tocols that are used to communicate with these devices includes Telnet, TL1, SSH,
SNMP, and various socket based communications protocols. In addition, ETA pro-

ETA v2.1 User Guide & Command Reference



1.2 ETA System Architecture 5

vides the ability to use various shell environments (Sh, Tcsh, Tclsh, etc.) and direct
sockets (MySQL®, etc.) to communicate with the devices used for testing.

The ETA Automation Language is an efficient and flexible method used to au-
tomate Systems Under Test (SUTs) and other vendor products used to test these
systems. Examples of devices used in testing include traffic generators, session
replicators, and capture/decode software/hardware.

ETA comprises the following sub-system elements:

• ETA Automation Language

• ETA Code Compiler

• ETA Syntax Checker

• ETA Execution Engine

• ETA Repository/Database

• ETA Scheduler

• ETA Report Manager

1.2.1 ETA Automation Language

The ETA Automation language is a 4th generation language, which is syntax checked
and pre-compiled. ETA’s reduced instruction set is written to make it quick and easy
for anyone to automate tests. Test plans are written using any standard text editor
or any off-the-shelf word processor that is capable of saving in a raw ASCII text
format. ETA uses this version of test plan file as its source code.

1.2.2 ETA Syntax Checker

The first time a specific test plan/execution table combination is scheduled for
execution, a Syntax Check is automatically performed. If desired, this check can be
performed (or repeated) through the Scheduler interface.

The syntax checker is responsible for verifying the following:

• That resources required in the test plan are appropriately defined in the exe-
cution table

• That the test plan contains all mandatory markers denoting test plan, group
and case sections, attributes, IDs, and definitions

• That the command syntax used for each command is according to syntax rules

• That declared lists, variables, flags, and named commands are correctly used
in conjunction with other commands in the test plan

ETA v2.1 User Guide & Command Reference



6 CHAPTER 1. INTRODUCTION TO ETA

During the compilation step, hardware abstraction is applied throughout the
test plan using the REPLACE commands contained therein. Hardware abstraction
allows the same set of tests to execute against various nodes and hardware types
without having to create entirely different test plans. An example of this is to
REPLACE ‘Serial0/1’ with ‘Ethernet2/2’, throughout the test plan. By applying
this REPLACE command to a test plan prior to execution; the test executable will
operate against the Ethernet2/2 port instead of the Serial0/1 port. This is one
example of how ETA supports hardware abstraction.

1.2.3 ETA Execution Engine

The ETA Execution Engine uses the test plan file to run tests and completes the
hardware abstraction routines to modify tests for hardware platform differences.
Tests can execute against any node, slot, or port without having to be rewritten.

1.2.4 ETA Repository/Database

The ETA Repository/Database contains the following:

• All user information

• Test plans and their associated groups, cases, and attribute definitions, in-
cluding previous versions

• All tables (i.e. exec, node, slot, card, and replace), including all of their
versions

• All execution result files with all of their associated reports and logs

• All node usage statistics and execution results

1.2.5 ETA Scheduler

The ETA Scheduler starts executions as requested by the users. It also keeps track
of what is currently running, to make sure that multiple executions do not attempt
to use the same nodes at the same time. When executions are requested, it ensures
that they have been pre-verified so that users will know, in advance, whether their
executions will be able to run at the allotted time. In addition, it calculates future
run times of recurring schedules.

1.2.6 ETA Report Manager

ETA Report Manager is responsible for the creation, the maintenance, and the
archiving of the logs and reports associated with Executions. It also rolls up the
results of multiple executions to provide summarized Execution Reports and tracks
the usage of nodes by executions and manual lockouts to provide summarized Node
Usage Reports.

ETA v2.1 User Guide & Command Reference



1.3 Role Appropriate Features 7

Under Executions are reports for individual executions. Each references all the
files involved in each execution. Further, each contains reports on all the details of
the execution. The non-input-file reports are as follows:

Attributes the execution metadata

Syntax Report all the output of the parsing and compilation steps

Detailed Report the complete output of the execution run

Summary Report a short report with one line per test

Console Log(s) the complete output from each node

Summarized Reporting is used to track results across many executions or to
track resource usage over many days, weeks, or months. Summarized Execution
Reports show how many test cases match certain constraints, broken down arbi-
trarily. (e.g. how many test cases PASSed each day this past week). Summarized
Node Usage Reports show when nodes were used for manual or automated testing,
and it can also be constrained or broken down by Node, User, or both.

1.2.7 ETA Server Directory

ETA directories are set up to store and maintain the various files used by the system.
The default directories for all ETA Server application file data are:

• /usr/share/eta
• /var/lib/eta
• /var/log/eta

1.3 Role Appropriate Features

1.3.1 Manager

ETA assists in simplifying the gathering and reporting of information that managers
need to determine the current state of SUT software/hardware. The Summarized
Reporting of PASS/FAIL verdicts is used to show the current state of any project,
sub-project, image, platform, target. At test scheduling time, the user defines a
series of classifications for the entire set of executed tests. These classifications, in
addition to several default attributes, are selected and filtered in order to create cus-
tomized PASS/FAIL reports. See section §11.3, “Summarized Execution Reporting”
on page 74.

In addition, ETA provides the ability to report on node usage statistics. Nodes
are documented as “used for automation”, “locked-out for manual testing or repro-
duction”, or “unused”. This information is available for both retrospective analysis
and future planning and enables managers to determine and optimize hardware
usage within their labs. section §11.4, “Summarized Node Usage Reporting” on
page 79.

ETA v2.1 User Guide & Command Reference



8 CHAPTER 1. INTRODUCTION TO ETA

Custom summarized execution report examples

• Create a summarized execution report for the current month, by unique ex-
ecution ID (X-axis) and individual test case ID (Y-axis), which shows the
verdicts for all tests executed within the month. This is useful in identifying
test cases that changed status from PASS to FAIL or vice-versa. The report in-
cludes the drill-down links to the individual executions where the PASS/FAIL
occurs.

• Create a Summarized Execution Report for an entire target/project by week
(X-axis) and summarized totals for verdicts for each test plan (Y-axis) that
has been executed. This is useful in identifying the general quality of SUT
software on a weekly basis through a test or verification cycle.

• Create a Summarized Node Usage Report for the past week, by quarter-hour
(X-axis) and by node (Y-axis), showing when the nodes have been in use, and
when they sat idle. This will help you locate under utilized resources.

Figure 1.2: Common Manager Views

(a) A Summarized Execution Report (b) A Summarized Node Usage Report

1.3.2 Test Automation Engineer

ETA assists test automation engineers by reducing the amount of code necessary to
accomplish any given task tenfold. Etaliq’s execution engine sub-system provides a
syntax checker that minimizes the time required to detect and correct typo’s and
logic errors within the ETA language code. The ETA language is comprised of a
few basic instructions, many of which combine to dramatically reduce code size and
errors.

Etaliq’s generic parsing capabilities save a tremendous amount of time by en-
abling any test automation engineer to define a set of expected results without the
need for complex parsing utilities or techniques.

ETA v2.1 User Guide & Command Reference



1.3 Role Appropriate Features 9

Additional high-productivity features that apply to test automation engineers
are shown under section §1.3.4, “Operations Engineer” on page 12.

Figure 1.3: Common Test Automation Views

High-Productivity ETA Language Examples

• Send Receive and Verify

1 RESULTLIST(verifyIntState)
2 "line status = administratively down"
3 "port status = enabled"
4 "input packets = 0"
5 "input errors = 0"
6
7 SEND Node1 "show port status" verifyIntState

ETA v2.1 User Guide & Command Reference



10 CHAPTER 1. INTRODUCTION TO ETA

The above line sends, to “Node1”, the command "show port status", then
verify the expected result definitions from the list named “verifyIntState”
against the response received to the command. Each individual item in the
result list is verified individually and assigned a verdict.

• Verify Statistics Changes

1 RESULTCOMPLIST(verifyIntStatistics)
2 "input packets INCREASEBYATLEAST 5"
3 "input errors EQUAL"
4 "output packets INCREASEBYATLEAST 5"
5 "output errors EQUAL"
6
7 SEND Node1 "show port statistics" verifyIntStatistics
8 SEND Node1 "ping 192.168.1.200 count 5 size 512"
9 SEND Node1 "show port statistics" verifyIntStatistics

The above set of instructions, sends the "show port statistics" command
to “Node1”, then pings a destination, and again sends the same command,
"show port statistics", to the node. The response from the first show
command are compared against the response from the second show, based on
the expected results in the result compare list named “verifyIntStatistics”

• Wait Until an Event before proceeding

1 RESULTLIST(verifyIntState)
2 "line status = active"
3 "port status = enabled"
4
5 WAIT 30sec Node1 "show port statistics"
6 verifyIntState interval=2sec

The above command will Wait up to 30 seconds for all of the expected results
defined within “verifyIntState” to be true, prior to proceeding. The com-
mand will be sent and the response verified every 2 seconds, to verify whether
the results are true. If results are true after any given interval, the automation
proceeds without wasting additional time.

• Further Reading

– For examples of complete test plans, see appendix C on page 293.
– For the ETA language details, see chapter 14 on page 107.
– For ETA’s unique IP Expression syntax, see section §16.1.1 on page 230.

1.3.3 SUT Development Engineer

ETA assists SUT development engineers with any daily repetitive tasks required
to test their development code on any device available to them. With a click of a

ETA v2.1 User Guide & Command Reference



1.3 Role Appropriate Features 11

button, entire testbeds can be reset to a desired/expected state, making them ready
for manual testing or automated sanity testing of latest compiled image.

Etaliq’s execution engine sub-system provides a syntax checker that minimizes
the time required to detect and correct typo’s and logic errors within the ETA
language code. The ETA language is comprised of a few basic instructions, many of
which combine to dramatically reduce code size and errors.

The ETA language, comprised of a few basic instructions, and Etaliq’s generic
parsing capabilities help SUT development engineers focus on the work at hand,
not on writing of automated tests.

Figure 1.4: Common SUT Developer Views

ETA v2.1 User Guide & Command Reference



12 CHAPTER 1. INTRODUCTION TO ETA

High-Productivity ETA Language Examples

• Unit Test

1 TABLE(UtAttributesTable) with 4 columns
2 AttrName SndValue ExpCmdStatus ExpOperState
3 "reg1" "0" "OK" "inited"
4 "reg1" "1" "OK" "learning"
5 "reg1" "-1" "FAIL" "learning"
6 "reg1" "2" "FAIL" "learning"
7 "reg2" "0x10" "OK" "passive"
8 # ...
9

10 RESULTLIST(CheckCmdStatus)
11 "command status = ExpCmdStatus"
12
13 RESULTLIST(CheckOperState)
14 "state = ExpOperState"
15
16 LOOP UtAttributesTable
17 SEND Node1 "compX-test-tool set AttrName SndValue" CheckCmdStatus
18 SEND Node1 "compX-test-tool get state" CheckOperState
19 ENDLOOP

The above example defines a set of testable attributes, values and expected
outcome in an easy to manage table named “UtAttributesTable”.
Each attribute and value is fed to the SUT developer’s ‘compX-test-tool’
Unit Test (UT) test tool for component “compX”. The returned command
status of each operation and the resulting operational state of the component
are verified for each line of the table.

With the simplicity of ETA’s verb language and Etaliq’s generic parsing capabili-
ties, writing reusable and one-off UT scripts is now quick and easy and at the reach
of any SUT development engineer.

1.3.4 Operations Engineer

ETA assists operations engineers by reducing the amount of time necessary to review
execution logs and reports by providing a highly structured Detailed Report output
format in tree format so that the operations engineer can quickly drill down to the
location of a failure. This Detailed Report is relative position linked to all other
Console Log(s) and files used or created during the execution including the source
code in the test plan itself. This allows an operations engineer to quickly identify
a failure condition and determine the actual cause, both within the Console Log(s)
of the devices in the testbed and within the test plan source code itself.

ETA also provides operations engineers with the ability to maintain a set of
repeating schedules in order to optimize both the use of the existing testbed re-
sources while ensuring the broadest coverage by executing all tests against a series
of images. Often in todays automation labs, there is not enough time and/or re-
sources, to execute all automated regression tests. This often results in the same
tests being scheduled to run against images repeatedly, while other tests of executed

ETA v2.1 User Guide & Command Reference



1.3 Role Appropriate Features 13

infrequently or not at all during a test cycle. ETA schedules can be set up to execute
tests 1, 3, 5, and 7 every Monday, Wednesday and Friday, and tests 2, 4, and 6 to
execute every Tuesday, Thursday and Saturday, and finally all tests 1 to 11 to be
run every Sunday.

• ETA’s full function scheduler allows operations engineers to schedule many
different test plans and test cases to execute repeatedly on a schedule without
user intervention. Specific test plans or portions thereof can be scheduled to
execute daily, weekly, monthly or in any combination in order to achieve the
maximum coverage of SUT images.

ETA v2.1 User Guide & Command Reference



14 CHAPTER 1. INTRODUCTION TO ETA

Figure 1.5: Common Operations Engineer Views

ETA v2.1 User Guide & Command Reference



285

See section §11.3, “Summarized Execution Reporting” on page 74 for more information.

ETA
v2.1

U
ser

G
uide

&
C

om
m

an
d

R
eferen

ce





Copyright i

Copyright

ETA® Copyright © 2000–2009 by Etaliq Inc.
All rights reserved.
Contact information for Etaliq Inc. is at the Etaliq website at http://www.etaliq.com.
This document is protected by copyright and distributed under licenses restricting its use,
copying, distribution, and decompilation. No part of this document may be reproduced in
any form by any means without the prior written authorization of Etaliq Inc. Documenta-
tion is provided “as is” without warranty of any kind, either expressed or implied, including
any kind of expressed or implied warranty of non-infringement or the implied warranties of
merchantability or fitness for a particular purpose.
Etaliq Inc. reserves the right to change any products described herein without notice. Etaliq
Inc. assumes no responsibility or liability arising from products described herein, except as
expressly agreed to in writing by Etaliq Inc. The use and purchase of this product does not
convey a license under any patent rights, trademark rights, or any other intellectual property
rights of Etaliq Inc.
All other trademarks mentioned in this document or website are the property of their respective
owners. The use of the word “partner” does not imply a partnership relationship between Etaliq
Inc. and any other company.
Printed in Canada.

ETA v2.1 User Guide & Command Reference


